5^2x-4=1/125

Simple and best practice solution for 5^2x-4=1/125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5^2x-4=1/125 equation:



5^2x-4=1/125
We move all terms to the left:
5^2x-4-(1/125)=0
We add all the numbers together, and all the variables
5^2x-4-(+1/125)=0
We get rid of parentheses
5^2x-4-1/125=0
We multiply all the terms by the denominator
5^2x*125-1-4*125=0
We add all the numbers together, and all the variables
5^2x*125-501=0
Wy multiply elements
625x^2-501=0
a = 625; b = 0; c = -501;
Δ = b2-4ac
Δ = 02-4·625·(-501)
Δ = 1252500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1252500}=\sqrt{2500*501}=\sqrt{2500}*\sqrt{501}=50\sqrt{501}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{501}}{2*625}=\frac{0-50\sqrt{501}}{1250} =-\frac{50\sqrt{501}}{1250} =-\frac{\sqrt{501}}{25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{501}}{2*625}=\frac{0+50\sqrt{501}}{1250} =\frac{50\sqrt{501}}{1250} =\frac{\sqrt{501}}{25} $

See similar equations:

| 7x^+x=0 | | 1-1y=(-10) | | f/5-21=25 | | y+(-16)=70 | | 3x-13=7(x+2-4(x-7) | | 6x-9=-81 | | 2q-5=1600 | | 11v=341 | | 15x=0.18 | | -2x+4=64/11 | | 3y=13-4y+1 | | 2r-6=3(r+2) | | 2a+2a=-6a+50 | | x/10-9=4 | | 82/5g=49 | | 7.2-3c=2c+1.4 | | 4(n-3)+6=2(2n+3) | | k–7=10 | | 84=7(r+11) | | 3m-8-30+5m= | | 7(2e-1)-3=6+e | | C=9/7(k-16) | | v-220=418 | | 7.2-3c=0.2c+1.4 | | x/10-2=-6 | | -5(6x-6)=-30x-30 | | 4(v-8)=-52 | | 8+4.50m=57.50 | | c/3– 1= 1 | | 2(n-4)=2n-8 | | 2c–5=-9 | | -49+b=8b-7(9b-1) |

Equations solver categories